
1

Bulgarian Diploma Thesis

Cheating Prevention Software for Online
Exams

Vitaliy Konyukhov, ID# 200086768

Student: , Date:
 signature

Supervisor: , Date:
 signature

Department of Computer Science, AUBG
Blagoevgrad, 2021

2

Title: Cheating Prevention Software for Online Exams

Author: Vitaliy Konyukhov

Abstract: Online exams are a big opportunity for students to cheat. The COVID

pandemic forced institutions to switch to online teaching, thereby increasing the

occurrences of cheating. This senior project aims at solving this issue by providing the

proctors with additional information about students’ activities. It consists of two

applications, one used by students and the other – by proctors. Students’ application

(the Client) collects various metrics of the operating system such as opened windows

or running applications and sends them to the proctor’s Server application, which

analyzes the data, as well as displays and records any suspicious activity. This

application simplifies the proctoring process and makes it more thorough at the same

time. The applications are created using Qt Framework with C++ Programming

Language and support multithreading. The communication is done over a custom

network protocol with TCP using Windows Sockets and secured using the TLS protocol

from the OpenSSL library.

Declaration of authorship:

“The Senior Project/Bulgarian Diploma Thesis presented here is the work of the author

solely, without any external help, under the supervision of Prof. Vladimir Georgiev. All

sources, used in development, are cited in the text and in the Reference section.”

Author:

3

0. Table of Contents

0. Table of Contents ... 3

1. Introduction ... 5

1.1. The Problem of Cheating on Online Exams ... 5

1.2. Existing Proctoring Solutions ... 6

1.3. Cheating Prevention Software ... 7

2. Specification of the Software Requirements and Their Analysis 9

2.1. Functional Requirements of the Client Application ... 9

2.2. Non-Functional Requirements of the Client Application 13

2.3. Functional Requirements of the Server Application 14

2.4. Non-Functional Requirements of the Server Application 18

3. Design of the Software Solution ... 19

3.1. Design of the Client Application ... 21

3.1.1. User Interface .. 22

3.1.2. Data Collection .. 22

3.1.3. Networking .. 23

3.1.4. Software Architecture .. 24

3.2. Design of the Server Application .. 25

3.2.1. User Interface .. 26

3.2.2. Networking .. 27

3.2.3. Data Analysis ... 27

3.2.4. Logging Suspicious Activity ... 28

3.2.5. Software Architecture .. 29

3.3. Security Considerations ... 30

3.4. Communication Protocol .. 32

3.5. Design Features Imposed by the Qt Framework .. 34

4

3.6. Reliability Considerations ... 37

3.7. Cross-Platform Portability .. 37

3.8. Employed Design Principles .. 39

4. Implementation ... 40

4.1. C++ Programming Language ... 40

4.2. Qt Framework .. 41

4.3. Qt Modules and Libraries ... 42

4.4. Windows Sockets 2 .. 44

4.5. OpenSSL ... 45

4.6. Other Libraries ... 47

4.7. Compilation and Deployment ... 48

4.8. Installation and Hardware Requirements ... 50

5. Testing .. 51

5.1. Client Application Testing ... 51

5.2. Server Application Testing ... 52

5.3. Testing of the Data Collection and Processing .. 54

5.4. Secure Connection Testing .. 61

6. Results and Conclusion .. 62

7. References ... 67

5

1. Introduction

The idea for my Senior Project came from discussions about online education, which

is an extremely convenient way of education since it is available wherever there is an

internet connection. However, one of the downfalls of online education is that the

instructors cannot properly proctor tests and exams online. Since my university uses

Zoom for videoconferences, which does not provide enough information about the

student’s actions on the computer, I have decided to implement a software package

that will expand the scope of Professors’ ability to proctor online exams and will simplify

their job by highlighting suspicious activity on the test-taker’s computer.

1.1. The Problem of Cheating on Online Exams

After the COVID pandemic, most institutions moved their classes online, and,

consequently, all the tests switched online as well. Students are much more likely to

cheat on online tests than in person. The proctor responsible for the supervision of

tests has a very limited view of the environment of the test-taker. In the case of using

Zoom, the proctor can only get the webcam video feed, sound from the microphone,

and the video of the shared screen. This opens multiple possibilities up for students to

cheat during online exams.

Of course, it is impossible to predict all different ways of cheating on online exams, but

they include the following: opening banned applications (internet browsers,

presentations, etc.), use of multiple monitors, use of remote-control software, use of a

virtual machine or a remotely controlled computer. However, there are ways that are

impossible to detect with software such as the use of external devices, the use of an

impersonator, or cheat sheets on paper, but this project will not take those into account.

Due to the pandemic, online examinations are often not a choice but a necessity. In-

person exams are either prohibited or dangerous for the test-takers and it is important

to preserve the integrity of examinations. There is no value in grades that students

receive if they cheated since their preparedness for the subject is not properly

evaluated. To prevent the compromise of online exams’ fairness, some universities

6

and other education institutions decide to use specialized proctoring software which

mitigates many cheating possibilities. However, this not only adds additional

complexity to the exams but also comes with high costs for the institutions.

1.2. Existing Proctoring Solutions

There are multiple software solutions designed to proctor online examinations and

maintain the integrity of tests. For example, ExamOnline, ProctorU, and Proctortrack.

ExamOnline uses artificial intelligence for proctoring and automatically verifies the

identity of test-takers with facial recognition. It can track the facial movements to

properly monitor the test-taker. It can detect any restricted objects with the camera and

any applications on the computer. It covers almost all possible cheating possibilities

and offers an easy and comfortable experience of taking tests.

ProctorU uses live proctors to constantly monitor the activity of test-takers. It verifies

the identity of the person taking an examination. It detects any suspicious behavior

using artificial intelligence. It monitors the activity on the screen, on the camera, and

the sound of the microphone. The functionality offered is more than enough to conduct

a proctored examination.

Proctortrack allows to automatically verify the identity of the person, proctor the

examination with artificial intelligence, monitor and analyze the activity. It is secure,

easy to use, and provides sufficient control of cheating during exams.

From the examples, we can see that existing solutions are automated, offer many

features, and detect cheating with high certainty. However, all of them are commercial

solutions. They require arrangements and contracts before they can be implemented.

Every test needs to be arranged in advance, putting additional considerations and

planning onto professors. The price of using existing proctoring software for the

universities is high, especially during the pandemic. If we consider the number of

students, the number of classes, and the number of various quizzes and examinations

in each class, the price becomes substantial.

7

1.3. Cheating Prevention Software

The software package developed in this Diploma Thesis aims at providing a substitute

for the proctoring software using the existing university infrastructure. Since Zoom is

already widely used for proctoring through its webcam, screen, and microphone

sharing capabilities, the software package should complement it by providing

additional data (metrics) collected from the test-taker’s computer to the proctor and

analyzing it.

Cheating prevention software consists of two applications: a server and a client. The

client application is intended to be installed at the test-taker’s computer and the server

application – at the proctor’s computer. Both applications display the relevant

information to the user through a graphical user interface, which is implemented with

the Qt toolkit. All the code is written in C++ using Qt Creator integrated development

environment (IDE). The existing applications are intended for use on Windows only.

The server and the client can communicate through the internet or local network. The

networking capabilities are implemented with Windows Sockets 2 (Winsock) provided

by the ws2tcpip.h header. The client application collects the metrics on the computer

and sends them in the form of text to the server using TCP/IP protocol. The connection

is encrypted with TLSv1.3 using the OpenSSL library. The server application receives

the metrics from all connected clients, displays them to the proctor in the GUI,

evaluates them to understand the behavior of the test-taker, and highlights the

suspicious activity.

The metrics that are collected include the active (foreground) window’s title and

process ID, whether the user is using a remote-controlled machine or a virtual machine,

the number of monitors that the computer has, the manufacturer and the model of the

computer, and the list of all running applications. The server uses a list of banned

applications and checks if the running applications include any prohibited software

(such as remote-control software). Since the window’s title usually includes sufficient

information about the activity in that window, the server compares the title of the

8

window with the list of suspicious keywords to predict cheating behavior and to

highlight the student for the proctor. The keywords can be added or removed from the

list by clicking on a student’s window’s title shown in the GUI.

9

2. Specification of the Software Requirements and Their Analysis

Since the project consists of two applications, the Client and the Server, the software

requirements are specified for each application individually. For clarity purposes, the

user of the Client application will be called the student, and the user of the Server

application – the proctor. The following are the functional and non-functional

requirements of the applications and their analysis.

2.1. Functional Requirements of the Client Application

Figure 1 – Use Case Diagram of the Client Application.

The use case diagram in Figure 1 summarizes the user interactions for the client

application. The details of the functional requirements are listed below.

1) When the student starts the Client application, a window should prompt to enter

the IP address (and optionally, the port) of the server. If the port is not specified,

the Client should use the default port of 23000.

To establish the connection between the server and the client, the Client application

must know the IP (Internet Protocol) address of the server. An IPv4 (Internet Protocol

version 4) address used in the application is a numerical label that consists of four

10

numbers from 0 to 255, separated by dots. A local or an external IP address can be

used for establishing a connection. A local IP address is used when the computers can

communicate within the same local network, and a global IP address is used when the

computers are connected to the internet. The client and the server must have a direct

or an indirect connection involving multiple networks to communicate. A port is a

communication endpoint within the computer, which ranges from 0 to 65535. It allows

computers to establish multiple connections with other computers while using one IP

address. The port must be specified to establish the connection with the server. The

default port is chosen to be 23000 as it is not used for any important applications and

is typically available. The Windows Sockets 2 (Winsock) is the application

programming interface (API) that allows creating a client application in C++ for

Windows, and it requires an IP address and a port to establish a connection with a

server and to transmit data over computer networks.

2) After the IP address is entered, the student should be prompted with a window

to enter the full name.

When a student gets connected to the server, the proctor needs to easily match the

displayed data with the person taking an online exam. When the data is personified, it

is convenient to display and log (save for future reference). Additionally, the

identification of students by name allows the proctor to verify that all students expected

to connect have connected. The Client application should not allow the student to enter

an empty name and it is the student’s responsibility to enter the correct full name.

3) The abovementioned prompts should be stored in a configuration file and

automatically typed in the prompts. The student may change them or leave them

as they are when prompted.

For the convenience of students, the application should save the previously entered

information. If the IP address or port has changed, the student can modify them but if

they remained unchanged, the student simply presses the OK button. Since the

student using the application is likely to have the same name entered previously, they

can press the OK button without entering their name every time. However, if another

student wants to use the application, the name can be modified, and it will be

automatically updated in the configuration file.

11

4) A random ID number should be generated upon the start of the application to

verify that it is running on the computer it is expected to be running on.

To ensure that the student taking the exam is running the application on the same

computer they are using, the proctor may look at the student’s shared screen. If the ID

numbers do not match, the student must be running the Client application on a different

computer and may be suspected of cheating. The number must be random to avoid

students modifying the ID number shown in the application. The ID number should

contain six digits to prevent collisions (when two or more students have the same ID

number) and make it is easy to read and compare.

5) After the setup, a graphical user interface should appear on the screen showing

the randomly generated ID number, the name of the student, and the status of

the connection (Initializing, Network Error, Connecting, Connected).

The application should display the ID number and the name of the student for

identification to be checked by the proctor on the screen sharing. The status of the

connection should be displayed to the student to identify any problems with the

connection and to convey about the successful connection.

6) The statuses Initializing and Network Error should be highlighted in red color,

Connecting – in yellow color, and Connected – in green color to simplify the

identification of the connection status.

Since the student is expected to be connected to the server at all times during an online

examination, a color indication should be provided to allow quick and easy detection

of any connection problems. In the case of application’s or network’s malfunction, the

proctor should be able to easily verify the problem on the shared screen if the Zoom

connection is present.

7) The Client should automatically connect to the server after the setup. If the

connection is not established or lost, the Client should automatically retry

connecting until it establishes the connection.

The transmission of data from the client to the server, and subsequently, the

connection between them, are the main features of the application. Therefore, the

Client should attempt to connect to the server as soon as the IP address (and port, if

necessary) and the name are entered. Although the students are expected to have a

12

stable and uninterrupted internet (or local network) connection, there may be

connection issues. If the internet connection is lost or has not been established, the

application should keep trying to connect to the server until the connection is

established or the application is closed.

8) The Client should collect the following data: active window’s title, active

window’s process ID, how many monitors are connected to the computer,

whether there is a remote session in process, computer’s manufacturer and

model, the list of all running processes on the computer.

In order to identify suspicious behavior on the student computer, the Client application

needs to collect different kinds of data from the operating system. The active window’s

title and process ID can be used to find out what application is currently in use.

Additionally, many windows have useful information in their titles, such as which

website is opened in a browser tab, which document is opened in a word processor,

or a presentation program. If the student has multiple monitors and only shares the

screen of only one of them, the proctor cannot see what is displayed on the other

monitors, so checking the number of monitors can help the proctor identify potential

cheating. The computer’s manufacturer and the model can be used to identify if the

application is running inside of a virtual machine. VirtualBox, VMware, and other virtual

machines automatically include their name in the computer’s manufacturer and the

model when the operating system is started. The presence of a virtual machine can be

a sign of cheating since the proctor cannot see what is happening on the host machine.

The list of running processes can reveal remote control software and other prohibited

applications running on the student’s computer.

9) The Client should send the randomly generated ID number, the name, and the

abovementioned data to the server in a secure way using TLS encryption.

The data collected from the student’s computer along with the ID number and the name

of the student should be sent to the server for analysis to be then displayed to the

proctor. The application should send the data using Transmission Control Protocol

(TCP) to ensure reliable transmission and Transport Layer Security (TLS) to ensure

secure transmission. The data should be sent to the server as encrypted text.

13

2.2. Non-Functional Requirements of the Client Application

1) Sending data to the server should take up only a small amount of network

bandwidth.

The data that the Client collects and sends should not be too comprehensive. It should

contain only the necessary information for the cheating prevention software’s use.

Additionally, it should not send the data too often.

2) The messages should be sent to the server four times a second.

The Client application should update the information that the server is showing

frequently to detect every switch of a window and every new running program. At the

same time, it should not take up too many resources from the central processing unit

(CPU), memory, and network. Therefore, a delay of 250 milliseconds between sending

data should be introduced.

3) The application should be intuitive and easy to use.

Since the application is intended to be used by students, it should require no special

training to operate. The student should need to be provided with the server’s IP

address only and to expect the application to run without any intervention.

4) The information in GUI should be easily readable during screen sharing.

Since the proctor may need to verify the correct usage of the application using screen

sharing, the information displayed by the Client should be easily readable.

5) The Client application should be reliable.

Since the purpose of the application is to be used during an examination, it should

cause no distractions for the students and work reliably from the beginning to the end.

14

2.3. Functional Requirements of the Server Application

Figure 2 – Use Case Diagram of the Client Application.

The use case diagram in Figure 2 summarizes the user interactions for the server

application. The details of the functional requirements are listed below.

1) When the proctor starts the Server application, a window should prompt to enter

the server port, and the Server should check if the port is available for use.

In order to establish a listening socket for the server, a port must be specified. This

port needs to be unoccupied on the computer, and, therefore, a commonly vacant port

of 23000 is suggested as the default port. It can be changed for reasons such as

15

another program using the port or multiple servers are running simultaneously.

Additionally, the selected port must be allowed in the Windows Firewall and open for

external connections on the internet router to allow students to connect through the

internet network.

2) The application should store the selected port in a configuration file. If the

application is started for the first time, the default port (23000) should be

prompted, otherwise the last selected port.

For the convenience of the proctor, the last selected port (or the default port) should

be saved in a configuration file and suggested in the dialog. It is necessary to allow

changing the port for multiple reasons, but the same port is likely to be used every time

the application is started.

3) The proctor should be prompted with their public and local IP addresses and

the port (unless it is the default port) to be copied and shared with students.

The proctor needs to be able to tell their IP address (and a port, if necessary) to the

students who are taking an online exam since the students need to enter the server’s

IP address to be able to connect to the server. For the convenience of the proctor, the

server should display their public and local IP addresses with the port for copying and

sharing with students.

4) The graphical user interface of the application should display the students in a

grid, dynamically expanding the grid as additional students connect.

After receiving and processing, the information about each student should be displayed

to the proctor in the GUI, such that all students were visible at the same time, therefore

a grid should be implemented. Since the number of students taking different exams

may vary, the window needs to dynamically expand to accommodate all connected

students.

5) The application should show if the student is connected or disconnected by

highlighting the student’s window with green or red color, respectively.

Since the information displayed in the GUI is updated as soon as new information is

received, it is necessary to check if the student’s information is recent. Therefore, the

Server application needs to periodically check the timestamps of the received data. If

16

the data has not been updated within the last few seconds, the student should be

considered disconnected, and their window should be highlighted with red, signifying

the connection issues. To reassure that the Server application is working correctly, and

the students’ received data is being updated, the window should be highlighted in

green color.

6) The displayed information should include the random ID of the student, the

name, and the student’s active window’s title and window ID.

To allow the proctor to verify that the student is running the application correctly, the

ID number should be displayed to be compared with the one shown on the shared

screen of the student. Furthermore, the name of the student should be shown for easy

identification of the information shown in the GUI. Since the student’s active window’s

title provides a good understanding of the activity on their computer, the title should be

displayed to the proctor. By checking the changes in window ID, the proctor can detect

if the student is switching windows. The title is supposed to change when the window

ID changes, otherwise, the student is deceiving the cheating prevention software.

7) The application should analyze the title of the student’s active window, highlight

the title if it is suspicious, and allow the proctor to easily edit the list of suspicious

keywords.

To simplify the monitoring of students’ activity, the active window’s title should be

compared with the list of keywords that make it suspicious, and if the similarity is found,

the displayed title should be highlighted to focus the attention of the proctor on the

suspected student to prevent cheating. Additionally, the proctor should be able to

expand the list of suspicious keywords by clicking on them. For example, if the proctor

notices a student using a messenger application, he or she should be able to click on

the “Messenger” word shown in the window in the application and this word should be

added as suspicious and should be highlighted in the future. Similarly, the proctor

should be able to remove the words from the suspicious keywords list.

8) The application should warn the proctor if the student has multiple monitors or

if the student is using a remotely controlled machine.

Having multiple monitors may be a sign of cheating, since the proctor cannot view what

is displayed in them, therefore, a warning should show up to notify the proctor of usage

17

of multiple monitors. If the application detects that the student is running the Client

application on a remotely controlled machine, the proctor should consider this behavior

suspicious since the proctor cannot see what is happening on the host machine.

9) The Server should identify if the student is running a virtual machine by

examining the computer’s manufacturer and model. It should warn the proctor

if virtual machine presence is detected.

If the application is running on a virtual machine, the computer’s manufacturer and

model will include the keywords of the virtual machine’s product name. If those

keywords are found, the student must be using a virtual machine which should be

considered suspicious as the student may be cheating on the host machine which

would be invisible to the proctor. A message should be displayed in the GUI if this

scenario is detected.

10) The Server should compare the list of the student’s running applications with

the list of prohibited applications and warn the proctor if any are found.

Numerous applications may be used for cheating on the exams, such as remote

desktop control software, screen sharing software, and others. The application should

include a list of such applications and allow the proctor to expand the list inside the

config file if needed. If the student’s list of running applications contains any prohibited

applications, the Server application should warn the proctor.

11) The server should keep a log file (recording) of any suspicious activity that

happened during an online exam.

The log file should be stored in a folder and contain the timestamps and the relevant

information about the suspicious activity. The log files should be opened with a browser

since every Windows computer has a browser pre-installed.

18

2.4. Non-Functional Requirements of the Server Application

1) The application should be informative and intuitive.

The application should be used with little to no training required. It should provide only

the necessary information and the students’ data should provide enough information

to detect any cheating behavior.

2) The Server should be scalable and should accommodate a minimum of thirty

students.

Since the online examinations are conducted for a class of students, which normally

consists of thirty students, the Server application should be able to display at least

thirty simultaneously connected students.

3) The Server application should be reliable.

The application should be designed to withstand loads of data coming in

simultaneously. It should process and show the data without interruptions for the

duration of an examination.

4) The window of the application should be readable to display all students.

For the convenience of the proctor, the application’ window should be adjusted

automatically to allow monitoring all students’ data simultaneously.

5) The application should have low resource consumption.

The application should work efficiently, without taking up much of the computer’s

resources, since the proctor may be using other applications, such as Zoom, at the

same time.

19

3. Design of the Software Solution

This section describes the design of the applications, the software architecture,

description of the software solution, special features and considerations made in the

design of the applications, and the design principles employed throughout the creation

of the software solution.

The base architecture for the senior project was chosen to be the client-server

architecture where one party initiates the communication, and the other party responds

to it [12]. It entails the division of the functions into two parts of the solution, the client,

and the server. The architecture implies that multiple clients send requests and receive

responses from one central hub – the server [12]. The server provides the ability to

store the data received from the clients and send the data to the clients. In other words,

the server is the hub of all resources that the clients need. Clients and servers

exchange messages in a request-response pattern. The client sends the request, and

the server returns the response.

There are several types of client-server architecture [12]:

1) 1-Tier, when user applications make requests to the server, such as database

server or a file server

2) 2-Tier, when applications are stored on the server, and the user applications

only provide an interface to interact with those applications, such as CRM server

3) 3-Tier, which is a combination of 1-Tier and 2-Tier architectures, when the

applications stored on the server interact with another server, and the user

applications provide an interface to interact with the server’s applications, such

as a web server with a database

4) N-Tier, which is similar to the 3-Tier architecture but multiple application servers

interact with a data-storing server, and the clients use interface applications to

interact with a server application that provides access to other servers’

applications.

The advantages of using a client-server architecture are no duplication of the server

program code by client programs, scalability, low resource requirements for the

20

computers running the client since the data processing is done by the server and

storing the data on the server which provides better security and permission control.

The disadvantages are that if the server fails, the entire system becomes non-

functional, sometimes a high cost of the server equipment, and the requirement to have

an administrator to support the system.

The basic idea of the client-server architecture is dividing a network application into

several applications, where each application provides a specific set of services. Such

applications can run on different computers, performing functions of a server or a client.

This allows increasing the reliability, security, and performance of network applications.

For the project, the 1-Tier client-server architecture was chosen. In essence, the clients

make a connection request to the server, the client and the server perform a TLS

handshake to encrypt the connection, and the clients regularly send the data to the

server without making any requests. The communications between the client and the

server are done over the internet or the local area network.

Both parts of the software solution, the Client and the Server, are written in C++ with

the help of the Qt framework to implement graphical user interfaces. For both

applications to be interactive and informative, the GUI is necessary. It simplifies the

user interaction with applications and makes them more intuitive to use.

Since Qt is a lightweight and extremely capable approach for creating GUI applications

for Windows with C++ programming language, it was chosen as part of the design of

the applications. In addition to the GUI, the Qt framework offers multiple useful libraries

and techniques that differ from the standard C++ programming and allow the creation

of complex applications.

21

3.1. Design of the Client Application

Figure 3 – Activity Diagram of the Client Application.

The activity diagram in Figure 3 represents the workflow of the Client application.

22

3.1.1. User Interface

The client application’s user interface provides two main functions: accepting user

input and displaying relevant output.

The application requests the IP address and, optionally, the port of the server and the

student’s full name from the user. After the user enters the information, it is checked

for validity. The IP address should be in the form of A.B.C.D where A must be between

1 and 255, and B, C, D must be between 0 and 255. If the port is specified, it must be

separated from the IP address with a colon. The name should consist of at least two

words, to make sure a full name is entered. If any of the checks are not satisfied, the

application requests the information again.

After the information is correctly entered, the application shows a small window that

always stays on top of other windows, is not resizable and is not minimizable. It shows

a randomly generated six-digit ID number, the name of the student, and the status of

the connection which is highlighted with the appropriate color.

The window serves the purpose of displaying whether or not the application is working

correctly and allows the proctor to verify that the student is running the application on

the same computer that the test is taken from. By comparing the ID numbers shown

on the proctor’s server and the student’s screen, the proctor can be certain that the

student is properly using the application.

The student is not expected to interact with the application after the connection is

established to avoid any additional distractions during an exam, therefore the user

interface does not include any interactive elements for the user.

3.1.2. Data Collection

The application collects data (metrics) from the computer to be sent to the server.

Those metrics include the active window’s title and process ID, number of monitors,

remote session presence, computer’s manufacturer and model, list of running

23

processes. The active window’s title and process ID, number of monitors, and remote

session presence are collected using functions in WinAPI. The application gets the

computer’s manufacturer and model using the entries in the Windows Registry. The

list of running processes is collected by creating a snapshot of processes and

extracting the names of processes. The collected data is supplemented with the

random ID number, the student’s name, and the timestamp which is generated by a Qt

function that gives the current number of seconds since Epoch (since January 1, 1970,

at midnight UTC/GMT). The data is then sent to the server using the networking.

Data collection serves the primary role of the Client application. The abovementioned

metrics are chosen specifically to ensure reliable detection of cheating during online

exams. The metrics are sufficient for the analysis by the server application.

Due to the amount of data collected on the student’s computer, it should be considered

sensitive information. Student’s name, the title of the window, the computer’s

manufacturer and model, the list of running processes reveal personal information that

can be used for unintended purposes, so the data should be encrypted before it is sent.

3.1.3. Networking

The networking in the client application is implemented using Windows Sockets API.

After initiating the Windows Sockets, the application creates a new IPv4 socket and

connects to the server with TCP (transport control protocol). The networking

incorporates the OpenSSL library that allows establishing a secure connection. After

the initial TCP connection is established, the server sends a certificate to the client,

and then a TLS handshake occurs. The client uses TLS 1.3 to encrypt the data before

sending it to the server. Every 250 milliseconds, the application sends the encrypted

data to the server.

24

3.1.4. Software Architecture

The client application consists of two main classes: mainwindow, and clientnetworking.

The class diagram presented in Figure 4 visualizes the classes, attributes, functions,

and relationships between classes implemented in the client application.

Figure 4 – Class Diagram of the Client Application.

The mainwindow class performs all functions of the applications. It initializes every

component of the application, prompts the user with name and IP address windows,

creates the networking thread, keeps track of the networking’s status using the

statusUpdater() function, and restarts it when needed with the networkingRestart()

function. Mainwindow class creates a thread for the clientnetworking class and

indicates to that class the randomly generated ID, the name, the IP address, and the

port.

The clientnetworking class runs in a thread to show GUI and run the data collection

and sending at the same time. The clientnetworking class performs data collection

through calls to the Windows API. It establishes the connection with the server and

exchanges TLS keys for encryption. Afterward, it sends the collected data to the server

as encrypted text via the sockets. Clientnetworking class also indicates the status of

the connection to the mainwindow class which modifies the respective GUI element.

For better code organization, the collection of data is done inside a separate getMetrics

function.

25

3.2. Design of the Server Application

Figure 5 – Activity Diagram of the Server Application.

The Activity Diagram of the Server Application represents how the Server application

behaves.

26

3.2.1. User Interface

When the application is launched, the user interface shows a prompt to select the

server’s port. Since the port value must an integer between 1 and 65535, the

application will show the prompt again if an invalid value is entered.

Afterward, the list of IP addresses is shown. If the port is not the default one (23000),

the shown IP addresses will be concatenated with the port value, separated by a colon.

The list includes the global IP address of the computer and the IP addresses of all

connected network interfaces.

The main window of the server application shows the “Waiting for connections…” sign

on startup. After some student is connected, the user interface shows the information

received. Each student’s information is shown in a box, and all boxes are arranged in

a grid. The information always includes the ID number, the name of the student, and

the active window’s title. If any suspicious activity is detected, a warning is displayed

in addition to the shown information. The user interface shows whether a student is

connected or disconnected by highlighting the student’s displayed box in green or red

color, respectively.

The user interface allows the proctor to resize the application for better data monitoring.

It offers only one interactive element for the user: the suspicious keywords editing

button, done in a form of a hyperlink. The students’ window titles shown in the graphical

user interface of the application can be clicked. This will create a window with the words

that are in the title. Every separate word is presented in the form of a button in that

window. If the word is already in the suspicious keyword list, it will be highlighted in

red, signifying that activation of such a word’s button will remove the word from the list.

Otherwise, the activation of the button will add the corresponding word to the list. All

buttons with words are situated in a column. The keyword list is updated in the config

file after pressing any of the buttons.

27

3.2.2. Networking

Like in the client application, the networking in the server application is implemented

using Windows Sockets API. After initiating the Windows Sockets, the application

creates a new IPv4 listening socket and accepts any TCP connections. The networking

also uses the OpenSSL library for establishing a secure connection. The application

uses a self-generated certificate and a key to encrypt the traffic. When a client is

connected to the server, the latter sends a certificate to the client, and then a TLS

handshake occurs. The server uses TLS 1.3 to decrypt the data received from the

clients.

3.2.3. Data Analysis

The server application analyses the data received from the students to detect any

suspicious behavior.

The active window’s title is checked for any suspicious keywords (for example, search,

messenger, or Quizlet) by comparing the title with the list of suspicious keywords. If

any such keywords are found, the application highlights the shown title in red.

If the number of monitors is more than one, the application shows a message showing

the number of monitors highlighted in red.

If the remote (RDP) session is detected, the server shows the “REMOTE SESSION

DETECTED!” warning.

If the computer’s manufacturer and model contain words signifying the use of a virtual

machine, such as VMware or VirtualBox, the message “VIRTUAL MACHINE

DETECTED!” highlighted in red appears.

If the list of running processes contains any forbidden apps from the corresponding list,

the server shows a message “FORBIDDEN APPS DETECTED:”, followed by the

names of running forbidden applications.

28

The design of the data analysis is specifically planned to be open for extension. The

existing data provides a sufficient amount of information about students’ activity to

analyze any cheating behavior. If there is a new algorithm to be implemented for

analyzing the data, it can be easily added to the data analysis code.

3.2.4. Logging Suspicious Activity

The proctor must be able to check the logs of the suspicious activity after an online

exam. It can be used either for checking if there was any such activity that the proctor

missed or to verify that the proctor has seen such activity to prove the student’s

dishonesty.

In order to implement the logging functionality, the design of the server application

includes the use of messages that are ready for logging. Since the label widget that

displays the students’ activity supports HTML tags, the main format for the data was

chosen to be HTML. If we save the HTML formatted in an HTML file, we get a ready-

to-use log file with no need for external software for displaying the data, since browsers

are pre-installed on every computer nowadays. The proctor can open the log file and

scroll it to view all the suspicious activity detected during the exam. The log file also

includes the timestamps of the activities for informativity.

By checking all instances of the class dataclass, which store a boolean makeLogEntry

variable signifying that the data must be stored in a log file, we can periodically save

suspicious activity to a log file. During the execution of the getResult() function, which

analyzes the students’ incoming data, the application changes the makeLogEntry

variable to true if any suspicious activity is found.

The log file preserves the same format of the data as the application’s GUI, as well as

highlights the suspicious activity in red color. These files are saved in the logs folder of

the server. The file names are formatted as YYYY.MM.DD_HH.mm.html, with the

application’s startup year, month, day, hour, and minute, respectively.

29

3.2.5. Software Architecture

The server application consists of three classes: mainwindow, networking, dataclass.

It uses multiple classes for better code structuring and software implementation. The

class diagram presented in Figure 5 visualizes the classes, their attributes, functions,

and relationships between classes implemented in the server application.

Figure 6 – Class Diagram of the Server Application.

The networking class runs in a separate thread to allow simultaneous execution of the

components of the application. The class performs the initialization of Windows

sockets and starts listening for connecting clients. It exchanges the TLS certificates

with the clients to establish an encrypted connection. The main function of the class is

to receive the data from all connected clients and send it to the mainwindow class.

30

The class dataclass provides a convenient place to store the data received from the

clients. It parses the data, analyzes it, and generates commands for displaying

information in the GUI when a getResult() function is called. One instance of this class

stores information of one student by their ID.

The mainwindow class performs the main processing for the application. It creates and

runs the networking thread. It uses the class dataclass to store and process the

connected clients’ data by storing the instances of the class in a vector. The class

checks whether there are certificates required for the TLS encryption, and if they are

not found, new certificates are automatically generated using the OpenSSL binary. The

mainwindow class performs logging of suspicious activity into a file. It prompts the user

for the port. It keeps the forbidden applications and suspicious keywords settings in a

config file. The function displayIPaddresses() shows the IP addresses of the computer

(both global IP and local IP addresses) in the GUI window. The function updater()

updates the information in the GUI when the networking class receives new data. The

function checkConnection() keeps track of clients and highlights the ones that are

disconnected. The function addKeywordsWindow() allows the user to add and remove

suspicious keywords by displaying a new window for choosing the words in the

selected sentence. The function checkPort() attempts to connect to the specified port

on the computer thus checking if the port is available.

3.3. Security Considerations

The data collected from the student’s computer should be considered sensitive and

should not be visible to anyone during the transfer. It should not be sent as plaintext,

therefore, some encryption algorithm needs to be implemented. One of the most widely

used and secure approaches to encrypting network data is Transport Layer Security

(TLS) [13]. It is used in web browsing in the form of HTTPS (Hypertext Transfer

Protocol Secure), in email transfer, in messaging applications.

TLS encryption provides secure end-to-end communications and ensures that the data

that is exchanged will not be readable to anyone on the network. Furthermore, it

prevents the data from getting modified during the transfer.

31

In order to establish a TLS connection, the server needs to have a digital certificate,

which can be generated automatically. After a client connects to the server, it requests

a secure connection and specifies TLS 1.3 connection. The server responds with the

hash function specified for the encryption and sends the public encryption key to the

client. The client then validates the certificate and generates the session keys to

establish a secure connection.

TLS 1.3 supports the following key exchange algorithms: DHE-RSA, ECDHE-RSA,

ECDHE-ECDSA, ECDHE-EdDSA, DHE-PSK, and ECDHE-PSK. All of the algorithms

incorporate forward secrecy that ensures that the session key will not be compromised

if the private key ever gets compromised. The cipher algorithms supported by TLS 1.3

are AES GCM, AES CCM, and ChaCha20-Poly1305. These algorithms are secure

against all publicly known attacks.

In conclusion, Transport Layer Security provides a very secure and fast way of

transmitting sensitive data [13]. It is easy to implement using the OpenSSL library and

adds very little load on modern computers. However, in order to use TLS encryption,

the server must have TLS certificates or keys.

In end-to-end encryption using Transport Layer Security, the encryption and decryption

of data are performed using keys [13]. There are three keys involved: a public key that

encrypts messages, a private key that decrypts messages, and a session key that can

do both encryption and decryption but can only be used for one session.

TLS certificates usually contain:

• The name of the issuing Certificate Authority

• Issue and expiry date

• The domain name

• The organization

• Additional subject domain names, including subdomains

• The public key

• The digital signature by the Certificate Authority

32

When the client connects the server, it receives a TLS certificate with the public key. It

verifies that the certificate is valid and if so, it sends a symmetric session key to the

server, which decrypts that key using the private key. The client uses the public key to

encrypt the outgoing messages and the session key to decrypt the incoming

messages.

The server application uses OpenSSL to generate self-signed SSL/TLS certificates for

the secure connection. It generates them during the first launch and creates new ones

at the beginning of the next year to keep the certificates secure. The certificates are

stored in the same folder as the application, and the file names are certXXXX.pem for

the certificate containing the public key and keyXXXX.pem for the private key, where

XXXX is the current year, i.e., cert2021.pem and key2021.pem. The parameters for

the certificate generation are:

• 365 days of validity, starting from the generation day

• 4096 bit RSA key

• Common Name – CheatingPreventionSoftware

• Organization – AUBG

• Locality – Blagoevgrad

• State – Blagoevgrad

• Country Name – BG.

3.4. Communication Protocol

The client and the server applications use a custom socket-based communication

protocol designed specifically for this senior project. It is connection-oriented and

ensures reliable transmission of data between the server and the client by establishing

a TCP connection over IPv4. The use of TLS encryption is omitted since it was

discussed in the previous section.

A network socket is a software interface that serves as an endpoint for receiving and

sending data in a computer network. Sockets use a TCP/IP data transmission model

to allow communication between devices with specified IP addresses and ports. There

33

are two sockets involved during communication, a client socket, and a server socket

(listening socket). There are reliable stream sockets (TCP, connection-oriented) when

the delivery of the data is ensured and datagram sockets (UDP, connectionless) when

the delivery and reliability are not guaranteed, and raw sockets when there is no

specific transport layer formatting [10]. Sockets can communicate over IPv4 or IPv6

network protocols.

The protocol’s design objectives are to be simple, efficient, and to minimize the traffic

load. The protocol is chosen to be text-oriented, where the messages are readable

character strings. The message structure is pre-defined and sends the data in a

particular order. Thanks to the use of TCP, the protocol provides reliable delivery of

messages and ensures that the data is not damaged, modified, or lost [10]. In the case

of connection loss, the protocol provides a detection mechanism that can be

implemented both by the client and the server.

The protocol is designed to perform the following sequence on the server:

1) Create a listening socket that works over IPv4

2) Bind the socket to the sockaddr_in structure configured to accept connections

from any network adapters

3) Listen for incoming client connections with the limit of clients set to maximum

4) Initialize an fd_set structure to allow multiple clients

5) Iterate through all fd_set elements, allowing some clients to connect and the

other clients to communicate with the server at the same time

6) Accept all incoming connection requests and add new client’s socket to the

fd_set

7) Receive the incoming data from a connected client and move on to the next

client

The protocol implementation for the client is as follows:

1) Create a client socket working with IPv4

2) Bind the socket to the sockaddr_in structure configured with the given IP

address and port

3) Connect to the server

4) Regularly send 8192 bytes of data to the server

34

The data that is sent using this protocol has a specific structure. The data is presented

as text with a fixed length of 8192 characters, so the size of the data is 8192 bytes.

There are nine entries in the data’s structure, separated by a semicolon (;). The data

entries are as follows:

1) Student ID represented as six digits

2) Student’s full name, that is no longer than 50 characters, represented as at least

two words

3) The active window’s title, which is no longer than 128 characters

4) The active window’s ID number represented as an integer

5) The number of monitors represented as an integer

6) The computer’s manufacturer and model, each no longer than 255 characters

long

7) The flag that a remote session is active, in the form of a digit 0 or 1

8) The timestamp in the form of an integer number of seconds since Epoch

9) The list of all running applications in the form of names of executables,

separated by a comma

If the resulting message is longer than 8192 characters, part of the running processes

list will be truncated to fit the message for the protocol. However, there has not been a

case that the message would not fit during the development, so the chance that some

processes will be sacrificed is very unlikely.

3.5. Design Features Imposed by the Qt Framework

Qt framework is highly multithreaded since it is a GUI-oriented framework. Different

components of a Qt program are running simultaneously and exchanging the data with

each other. It has mechanisms for detecting user interaction with the GUI and

responding to those interactions in the code. Observable objects such as buttons,

sliders, text fields can respond to interactions by creating windows, changing variables,

and so on.

The components of the application can transmit information to each other by “emitting”

a “signal” [6]. The signal is declared in the header file for the class, and the signal can

35

be called by a function emit() within the code. The recipient of the signal must have a

“slot” declared in its header, which also must be implemented in the recipient code.

The slot function is launched when the corresponding signal is emitted and the function

receives the parameters from the signal. Multiple signals can be connected to one slot

and vice versa. This mechanism allows the programmer to respond to any event within

different threads or classes in the code.

Figure 7 – Signal-Slot Relationship of the Classes in the Client Application.

The signal-slot relationship diagram in Figure 7 visualizes the connections between

class objects. As you can see, the client application uses this mechanism to update

the status of the network connection in the GUI window from the ClientNetworking

class by emitting an updateStatus(QString) signal which invokes a

statusUpdater(QString) slot. Also, timeout() signal invokes a networkingRestart() slot.

The server application uses the mechanism more extensively, as you can see in Figure

8. The networking class emits the update() signal to send the incoming data from the

clients to the mainwindow class that is responsible for data processing and output to

the GUI. Additionally, a timer can be used to track any changes or perform actions

periodically. The server application utilizes a timer to check if the clients are connected

by comparing the timestamps of the clients’ last updates. If the timestamp has not

changed within some period of time, then the client is disconnected. In order to create

the functionality of addition and removal of suspicious keywords, buttons were used.

The clicked() signal of a button calls a modifyKeywords() function that adds or removes

a keyword respective to the button. To open a window with the abovementioned

buttons, the user clicks a text link in the GUI, which triggers a linkActivated() signal that

causes the new window to pop up.

36

Figure 8 – Signal-Slot Relationship of the Classes in the Server Application.

Another notable component of the Qt is widgets, which provide the programmer with

various GUI elements. These include buttons, spacers, item views, containers, input

and output widgets [6]. The framework allows adding these widgets in advance, during

the development, as well as on the fly, in code. This allows creating an application with

a static GUI or a dynamically changing GUI. The client application has a static GUI,

meaning that the elements are created when the program is launched and their

properties, such as the text of a label, are modified during the program’s execution.

The server application’s GUI, on the other hand, is largely dynamic. When the

application is launched, it shows the IP addresses of the computer in a text box inside

a standalone window. The main window can add new elements as more clients

connect, allowing for an arbitrary number of simultaneous clients. Additionally, the

server application creates an additional window on the fly, if the user needs to add or

remove the keywords. The Qt widgets allow the programs to have an intuitive and

useful graphical user interface with very easy code.

37

3.6. Reliability Considerations

The goal of the applications is to detect and prevent cheating during online exams, so

reliable execution of the applications is vital. They need to work without any crashes,

handle multiple connected students, and ensure a reliable connection. The client

application must remain open throughout the examination. If the student’s internet

connection gets interrupted, the client application must inform the student in the GUI

and try to reconnect until the connection is established. Even if the network routines

fail, the application will restart the network subsystem, since the random ID is meant

to stay the same throughout the exam and the student should not be distracted from

the exam.

The server application is designed with similar principles. The proctor should be able

to reliably monitor the students in the server application, therefore, the server should

work without any freezes or crashes. It must accommodate any reasonable number of

connected clients and process the incoming information without any delays. The

design of the algorithms and data processing is based on the principle of efficiency and

low resource consumption. The application is optimized to work on any low-

performance computer thanks to the use of the C++ programming language, efficient

libraries, and fast Qt framework’s mechanisms.

Additionally, the programs verify that the student is using the application on their

respective computer by displaying the random ID. If the student launches the client

application on a different computer, the proctor will notice that on the student’s shared

screen. If the student restarts the program, the proctor will see that a new student is

connected since the ID will be new. Reliable communication between the client and

the server ensures that the student is not cheating the cheating prevention system.

3.7. Cross-Platform Portability

The students use different computers when taking online exams, and the operating

systems they use also vary. The project is designed such that the applications will work

on any computer running the Windows Operating System to maximize the usability and

38

the reach of users of the applications. Since the project is meant to be used during any

online exam, the software design aims to allow every student to run the client

application on their computer.

At the time of the creation of this senior project, the client and the server applications

are designed for the Windows platform, since all computers on the AUBG campus

(except in Mac Lab) are running Windows, and the majority of the professors use

Windows as well. Starting with the compiling standpoint to the choice of libraries, the

applications are not cross-platform and cannot be recompiled for a different operating

system. The core libraries are tied to the Windows networking stack, with the calls and

routines that can only be compiled for a computer running Windows Operating System.

The applications are written using the Qt Framework, one of the main features of which

is cross-platform development [6]. This means that the code written for Windows that

does not involve Windows-specific libraries can be easily ported to another platform. If

we replace those libraries with the libraries that work on another platform and replace

the calls to the functions, the code can be ported without much trouble, keeping the

majority of the code unchanged. Since the Qt Framework provides a cross-platform

GUI implementation, the graphical user interface of applications will look and work the

same across different platforms, without any modifications in the code.

In the server application, the Windows-specific libraries used are the Windows Sockets

2 (Winsock) API which is provided by the ws2tcpip.h header file and the Windows

Internet (WinINet) API which is provided by the wininet.h header file. They can be

replaced by, for example, the Linux sockets from sys/socket.h header and a libcurl API.

Another Windows-specific call is the server’s command to generate new certificates

for TLS encryption, where the application runs the OpenSSL executable with the

specific arguments. The OpenSSL Windows executable can be replaced with the one

for another platform. Since OpenSSL is cross-platform, the code modifications will only

include a replacement of the function. The server application can be ported to another

platform if needed while leaving most of the code unchanged.

The client application, on the other hand, involves multiple Windows API calls in

addition to the Windows Sockets 2 since it collects the metrics from the operating

39

system. This means that porting the client application to another platform will require

most of the source code to be modified in order to implement data collection on a

different platform. However, the GUI and user interactions can be preserved since they

are written using the Qt framework.

3.8. Employed Design Principles

Throughout the client and the server applications’ code, there are several fundamental

software design principles employed. These principles ensure the readability and

simplicity of the code and allow the applications to be extended and modified in the

future.

One of the main principles of object-oriented programming is the SOLID. It includes

the following concepts [3]:

1) The Single-responsibility principle, which states that any class should have only

one responsibility

2) The Open–closed principle, which states that any software should be open for

extension but closed for modification

3) The Liskov substitution, which states that functions using pointers or references

to base classes must be able to use objects of derived classes without knowing

it

4) The Interface segregation principle, which states that multiple client-specific

interfaces are better than one general-purpose interface

5) The Dependency inversion principle, which requires to depend upon

abstractions not concretions

In addition to the principles above, the following principles are employed throughout

this senior project: “don’t repeat yourself” or DRY principle that reduces the repetition

of software patterns, the principle of least astonishment that ensures that a solution or

approach would not surprise a reasonably knowledgeable person in the subject area

when encountered for the first time, the separation of concerns principle that requires

separating each distinct section that addresses different individual concerns [3].

40

4. Implementation

This section dives into the implementation of the software solution, the technologies

and approaches used to implement the applications, and the detailed descriptions of

the choices made throughout the making of the applications’ code.

The client and the server applications were written using the C++ programming

language, the Qt framework, and several libraries. The Qt Creator integrated

development environment was chosen for development since it offers multiple Qt-

related features for GUI development.

4.1. C++ Programming Language

From the beginning of this project, it was clear that the applications should be written

in C++. It is fast and the code will run on any modern computer with little to no impact

on the performance. It allows creating complex applications and using a variety of

libraries and APIs. Built-in low-level calls allow the programmer to interact with the

operating system’s parameters and with the hardware.

C++ is a compiled statically typed general-purpose programming language [1].

Statically typed means that variable types are set at compile-time and cannot be

changed. Modern C++ has object-oriented, generic, and functional features [1]. It

provides security features and simplifies the code by function and operator

overloading.

The main reason for choosing C++ was the ability to get full access to the operating

system’s APIs. Since the client’s main objective is to collect metrics from the Windows

OS, it is necessary to interact with Windows without any intermediate layers. The

User32 and Kernel32 libraries provide the Windows API for C++ [4]. The Win32

Application Programming Interface is a set of functions running under the Windows

operating system, contained in the windows.h library. In addition, C++ allows creating

the custom network protocol using sockets provided by the Winsock API provided by

the ws2tcpip.h C++ header file [14].

41

4.2. Qt Framework

To create graphical user interfaces for C++ applications, we need special tools. Qt

Framework provides such tools for multiple platforms, including Windows. Qt offers

developers a modular library of over 700 C++ classes, Qt Quick technology for creating

UI using the declarative QML language, and a professional toolkit [6]. Qt allows

developers to speed up the process of software development, to increase code’s

efficiency, considerably reducing the development duration.

Qt allows one code to run on most modern operating systems by simply recompiling it

or each system without making any changes. It includes multiple basic classes that

may be needed when developing applications, from GUI elements to networking,

database, and XML classes. It is fully object-oriented, extensible, and supports

component-oriented programming techniques.

Qt includes a visual GUI development environment called Qt Designer that allows

creating dialogs and forms in WYSIWYG (What You See Is What You Get) mode [6].

Qt comes with a Qt Linguist tool to simplify localization and translation of the program

into other languages, and a Qt Assistant that provides a tool that simplifies creating

documentation for the libraries and makes it possible to create cross-platform

documentation for Qt-based applications. The Qt Creator includes a development

environment, a code editor, assistance tools, the Qt Designer graphical tools, and

debug tools. Qt Creator can use GCC or Microsoft VC++ as a compiler and GDB as a

debugger. Windows versions of Qt Creator include a compiler and MinGW files.

Qt Widgets is a C++ library for creating user interfaces with a native look for each

desktop platform. It is commonly used to develop large-scale interfaces for desktop

platforms. Qt Widgets are easily customizable, extensible, and can be adapted to

accommodate any interface.

Qt Framework offers the following benefits:

• Use of a single framework for development

42

• Use of C++ and QML

• High performance due to the native platform

• Quick start of development: convenient installers, ready-made tools, the ability

to create prototypes

• Qt Creator development environment with the ability to run and debug directly

on the device with additional tools

• Detailed API documentation, examples, and tutorials

• A single platform for creating any application

4.3. Qt Modules and Libraries

Qt is more than just GUI elements. The Qt Framework is an interconnected system,

whose objects are related through inheritance of the QObject class. Qt Framework

includes several modules that provide different functionality for the applications. The

following modules are used in the client and the server applications:

1) Qt Core which includes core non-graphical classes used by other modules

2) Qt GUI which includes base classes for GUI components

3) Qt Widgets module which extends Qt GUI with C++ widgets

The abovementioned modules provide all the Qt-related functions and libraries used

in the applications. They are provided as a part of the Qt Framework.

The Qt libraries used by the client application are the following [5]:

1) QtCore, which adds multiple Qt-specific features to C++. It provides object

communication through signals and slots, queryable and designable object

properties, guarded pointers, a dynamic cast across library boundaries

2) QMainWindow, which provides the main application window

3) QSettings, which provides persistent application settings

4) QInputDialog, which provides a simple dialog to get a single value from the user

5) QThread, which provides threads management

6) QTimer, which is a class that provides repetitive and single-shot timers

43

The server application uses the same libraries as the client but additionally uses the

following [5]:

1) QLabel, which is a widget that provides a text or image display

2) QGridLayout, which is a class that allows arranging widgets in a grid

3) QVBoxLayout, which is a class that allows arranging widgets vertically

4) QVector, which is a template class that provides a dynamic array

5) QMessageBox, which is a class that provides a dialog for informing the user or

for asking the user a question and receiving an answer

6) QPushButton, which is a widget that provides a command button

7) QFile, which is a class that provides an interface for reading from and writing to

files

8) QProcess, which is a class that is used to start external programs and to

communicate with them

The Qt libraries used in the applications are necessary for the successful execution of

the fulfillment of the requirements. The client application uses QThread class to run

the client’s clientnetworking class or the server’s networking class in a separate thread,

allowing multithreading and simultaneously operating the GUI window and

communicating with the server. QSettings class is used to store configuration variables

in a file and restore them during the next run of an application. QTimer class is used

to regularly invoke functions in the application code. QFile class is used to check the

existence of files, such as certificates for TLS encryption. QInputDialog class is used

to display any errors to the user during the application’s execution. QVector class is

used to dynamically store instances of the class dataClass in the server application.

QProcess class allows the server application to generate self-signed TLS certificates

by running the OpenSSL executable and passing the appropriate parameters.

All Qt objects can have signals and slots, which allow the objects to interact with each

other. A slot is called when it receives a corresponding signal. A signal is emitted by

an object that wants to invoke a function that corresponds to a slot. The parameters

passed to an emitted signal can be further passed to the slot’s function. For example,

a QTimer object emits a timeout() signal when the specified time has passed, then we

can connect that signal to a networkRestart() slot in the client application, resulting in

invoking the function networkRestart() every specified time.

44

4.4. Windows Sockets 2

Windows Sockets 2, or Winsock, is an application programming interface (API) that

provides access to the network functions and network services, such as TCP/IP, on

Windows. Winsock is the interface between the application and the transport protocol

that handles the data transfer. Winsock is used on the client to connect to the server

and send the data, and on the server to accept incoming clients and receive the data.

In C++, Winsock can be included in the code as a ws2tcpip.h header file, which

includes winsock2.h header, and implements Winsock API’s functions. Additionally,

the wsock32 and Ws2_32 libraries must be linked for implementing the API calls.

Winsock is pre-installed on Windows Operating System and can be accessed by

applications through the wsock32.dll Dynamic-link library.

The following steps are taken by the client to establish a connection [7]:

1) Initialize Winsock by a WSAStartup() function, specifying version 2.2 of the API

2) Create a connection socket with IPv4 protocol and socket type TCP

3) Setup the connection type and destination by specifying the address type IPv4,

the server’s address, and port in a sockaddr_in variable

4) Connect to the server by a connect() function

5) Send the data using a send() function (due to TLS, use SSL_write instead)

6) Close the connection using closesocket() function and perform a cleanup with

WSACleanup() function

The server takes the following approach [7]:

1) Initialize Winsock by a WSAStartup() function, specifying version 2.2 of the API

2) Create a listening socket with specified protocol IPv4 and socket type TCP

3) Setup the connection type by specifying the address type IPv4, the interfaces

which will accept connections to be any, and the port in a sockaddr_in variable

4) Listen for connecting clients with a listening socket

5) Initialize an fd_set structure that stores listening socket and connected clients’

sockets to allow multiple clients to connect simultaneously

45

6) Iterate through all fd_set elements, if the current element is a listening socket,

then accept a new client and add to the set, otherwise receive the message

from a client using recv() function (due to TLS, use SSL_read instead)

Windows Sockets 2 is the only API that allows interacting with networking on Windows.

Microsoft provides detailed documentation that includes examples of client and server

implementation in C++. In addition, Winsock provides the programmers with the

opportunity to create their unique communication protocol using sockets, which

allowed creating one for this project.

Furthermore, the Winsock API allows the server to list the local IP addresses of the

computer’s network interfaces. After initializing the API with WSAStartup() function, we

read the hostname of the computer using gethostname(), then we write the result of

the gethostbyname() function into a hostent structure. We read the h_addr_list

parameter from each element in the structure into an in_addr structure and translate it

into an IP address using the inet_ntoa() function. As a result, we get the local IP

addresses of the computer.

Another use of the Winsock API on the server is checking if the chosen port is available

using the checkPort() function. It initializes a client socket and attempts to connect to

the specified port on the localhost (127.0.0.1), and returns true if the connection is

successful, signifying that the port is not available.

4.5. OpenSSL

OpenSSL is an open-source software library that allows applications to establish

secure communications over computer networks. It supports almost every hashing,

encryption, and electronic signature low-level algorithms, and implements the most

popular cryptographic standards, including RSA, DH, DSA keys, X.509 certificates,

generating them, testing, and data encryption over SSL/TLS connections [2]. The main

reason that the OpenSSL library was chosen for this project is its ability to encrypt and

decrypt messages ensuring the security of the communication using TLS protocol and

the function of generating self-signed certificates for the TLS communication [2].

46

To use OpenSSL in a C++ application, we need to include openssl/ssl.h and

openssl/err.h header files as well as libssl and libcrypto libraries in the project.

The secure communication protocol chosen for the project is TLSv1.3 (the latest

version of the successor of SSL), and the cipher is TLS_AES_256_GCM_SHA384.

The data is encrypted on the client, then sent to the server, where it is later decrypted.

The automatic generation of self-signed certificates is performed by running the

“.\openssl.exe req -new -newkey rsa:4096 -days 365 -nodes -x509 -subj

"/C=BG/ST=Blagoevgrad/L=Blagoevgrad/O=AUBG/CN=CheatingPreventionSoftware

" -keyout keyXXXX.pem -out certXXXX.pem” command which outputs a public key

certificate certXXXX.pem and a private key keyXXXX.pem, where XXXX is the current

year. The certificate uses a 4096-bit key and expires in 365 days since generation.

The implementation of OpenSSL on the server is as follows [8]:

1) Initialize the OpenSSL routines by performing SSL_load_error_strings(),

SSL_library_init(), and OpenSSL_add_all_algorithms()

2) Create SSL_CTX object with SSL_CTX_new() specifying TLS protocol and

require it to be version 1.3 using SSL_CTX_set_min_proto_version()

3) Load the certificate using SSL_CTX_use_certificate_file() and the private key

using SSL_CTX_use_PrivateKey_file()

4) Create an SSL object using SSL_new(), and assign it to the client’s socket using

SSL_set_fd()

5) Perform a TLS handshake using SSL_accept()

6) Receive and decrypt messages using SSL_read()

The client application performs a similar procedure [9]:

1) Initialize the OpenSSL routines by performing SSL_load_error_strings(),

SSL_library_init(), and OpenSSL_add_all_algorithms()

2) Create SSL_CTX object with SSL_CTX_new() specifying TLS protocol and

require it to be version 1.3 using SSL_CTX_set_min_proto_version()

3) Create an SSL object using SSL_new(), and assign it to the client socket using

SSL_set_fd()

47

4) Initiate a TLS handshake using SSL_connect()

5) Encrypt and send the data using SSL_write()

A TLS handshake is the process of initiating and establishing secure communication

using TLS encryption. It is performed as follows [11]:

1) First, the and the server establish a TCP connection

2) The client sends a “client hello” message specifying the supported TLS

versions, the supported cipher suites, and a random string

3) The server responds with a “server hello” message specifying the chosen TLS

version, the certificate with a public key, and a random string

4) The client verifies the server’s certificate and sends an encrypted “premaster

secret” to the server

5) The server decrypts that secret using the private key

6) Both parties generate the session keys using previously exchanged messages

7) The client sends a “finished” message encrypted with the session key

8) The server sends a “finished” message encrypted with the session key

After the handshake is complete, the client and the server can communicate securely

using the session key for encryption and decryption.

4.6. Other Libraries

In addition to the abovementioned libraries, there are several other libraries used in

the applications due to their specific feature set.

To generate a random ID number, the client application uses the standard C++ library’s

mt19937 object that uses time as a seed for generating random numbers. An integer

number between 0 and 999999 is generated with a uniform_int_distribution<int> object

that requires passing the mt19937 object to it.

The client application uses a tlhelp32.h header file and a Kernel32 library which provide

WIN32 tool help functions, types, and definitions. They are used to get the list of

running processes by creating a snapshot with CreateToolhelp32Snapshot() and

reading the processes from it with the Process32Next() function [4].

48

The other metrics are collected by the client application using GetWindowText() to read

the title of the window, GetWindowThreadProcessId() to get its process ID,

RegGetValue() to get the computer’s manufacturer and model from the Windows

Registry’s SYSTEM\CurrentControlSet\Control\SystemInformation path using

SystemManufacturer and SystemProductName entries respectively,

GetSystemMetrics(SM_CMONITORS) to get the number of monitors and

GetSystemMetrics(SM_REMOTESESSION) to check if the remote session is running.

These functions are provided by the User32 Windows library.

The server application uses a wininet.h header file and a wininet library which provide

the Windows Internet API for C++. WinINet allows the server to access standard

Internet protocols such as HTTP, and it is used to request the global IP address of the

computer [14]. To do that, the server uses InternetOpen() function to initialize the

Windows Internet API, then performs InternetOpenUrlA() that opens a website, which

returns the global IP address as a string that we can read using InternetReadFile()

function and perform InternetCloseHandle() afterward to close the API.

4.7. Compilation and Deployment

Since the project is created in the Qt Creator IDE, which provides built-in mechanisms

for compiling and deploying applications, the executables for the client and the server

are built in a release mode using the IDE. Qt Creator uses project files that have a .pro

format for the configurations of the application. These files contain information for the

qmake that builds the application and specifies the resources in the project. The client

application is configured as follows:

1) Qt libraries used are core, gui, and widgets

2) The C++ programming language version C++11

3) The source files are clientnetworking.cpp, main.cpp, and mainwindow.cpp

4) The header files are clientnetworking.h and mainwindow.h

5) The form (user interface markup) file is mainwindow.ui

6) Libraries used are wsock32, Ws2_32, User32, Kernel32, and from the lib folder

of the OpenSSL library: libssl and libcrypto

49

7) Include the headers from the include folder of the OpenSSL library

8) Define the Unicode standard for encoding text in the application

9) Set the icon of the application to be icon.ico from the project’s folder

10) Define the default rules for deployment

The server application is configured slightly differently:

1) Qt libraries used are core, gui, and widgets

2) The C++ programming language version C++11

3) The source files are dataclass.cpp, main.cpp, mainwindow.cpp, and

networking.cpp

4) The header files are dataclass.h, mainwindow.h, and networking.h

5) The form (user interface markup) file is mainwindow.ui

6) Libraries used are wsock32, Ws2_32, wininet, and from the lib folder of the

OpenSSL library: libssl and libcrypto

7) Include the headers from the include folder of the OpenSSL library

8) Set the icon of the application to be icon.ico from the project’s folder

9) Define the default rules for deployment

Using the abovementioned project files, the Qt Creator automatically executes

mingw32-make.exe when the project is run or built. The produced executable file can

be launched inside the IDE but it lacks the necessary libraries to run standalone, so

we need to perform the deployment.

The executable files should then be deployed using the built-in Qt 6.1.3 (MinGW 8.1.0

64-bit) tool that provides a windeployqt.exe application. The Qt Framework provides

two ways of deploying applications: static linking and shared libraries, and the latter

was chosen for this project to provide flexibility. To perform the deployment, we need

to open the location of the compiled executable of a Qt application and run the

“windeployqt.exe --quick --no-translations .” command. This tool will add all necessary

Qt files that the application requires to run.

In addition, the server application must have the OpenSSL executable openssl.exe in

the same folder to allow generating certificates. It is free and open-source, and the

OpenSSL version for Windows can be downloaded from

50

https://slproweb.com/products/Win32OpenSSL.html or the OpenSSL source files from

https://www.openssl.org/source/ that can be compiled for Windows. The executable is

provided with the server files in the Server folder for the project. The OpenSSL libraries

libcrypto-3-x64.dll and libssl-3-x64.dll need to be added to the applications’ folders.

Additionally, the openssl.cfg configuration file needs to be provided in the same folder.

These files are included with the applications for the project.

4.8. Installation and Hardware Requirements

There is no installation needed to run the client application. The user should open the

respective folder with the application and run the Client.exe file. The application will

start without any additional steps from the user.

The server requires some files from the OpenSSL to be provided with the application

since there are dependencies that the openssl.exe file requires for self-signed key

generation. In this project, all necessary files are provided for the application, so it can

be run without any additional steps from the user.

In addition, the applications need to run on a computer without a software network and

execution locks such as the ones implemented on AUBG computers that are imposed

by policies. The networking cannot properly initialize on such computers due to the

restrictions.

The minimum hardware requirements for the applications are the following:

• Windows 7 or newer Windows OS

• 1 GB of RAM

• 1 GHz CPU

• OpenGL ES 2.0 support

• 100 MB of free space

• Stable network connection with the speed of 4 Mbps

https://slproweb.com/products/Win32OpenSSL.html
https://www.openssl.org/source/

51

5. Testing

The applications have been thoroughly tested throughout the development process to

verify that all requirements, both functional and non-functional, have been met. This

section explains the testing process and any findings discovered during testing.

5.1. Client Application Testing

The testing of the client application starts with the user prompts and various values

passed to it. When the application is launched, the user is prompted to enter the IP

address in the form of A.B.C.D or A.B.C.D:PORT. If the user enters an incorrect value,

the prompt will show the prompt again.

Several tests were performed to test the checks, which have presented the prompt

again (wrong IP address):

• Check

• localhost:25565

• 0.0.0.0

• 500.500.500.500:25000

• 1.2.3

• check.check.check.check

• An empty value

The examples of a suitable IP address are 127.0.0.1 and 127.0.0.1:23000

The next prompt asks the user to enter a full name in the form of First Name Last

Name. If the user enters only the first or only the last name, they will be prompted

again. Testing of these verifications reveals that “Vitaliy” and “Konyukhov” will prompt

the user again, but “Vitaliy Konyukhov” will be accepted.

The IP address (and, potentially, the port) and the full name are stored in the config.ini

configuration file in the same folder as the application, and the stored information is

presented to the user in the prompts in the future.

52

After the prompts, the application shows a window. This window cannot be resized,

minimized, and always stays on top. This has been tested when the program launched.

By launching the application multiple times, it was verified that the ID is being

generated randomly. The examples of the IDs are 794414, 099130, 145541, 389899,

071568, which demonstrates that ID numbers are random and consist of 6 digits.

The application attempts to connect to the server using the specified IP address (and

port, if specified) and shows the user the yellow “Connecting” message and tries

connecting indefinitely until the connection is established. After the connection is

established, the application window shows a green “Connected” message. If the

connection disappears, the application shows the yellow “Connecting” message again

and tries to reconnect. When the server becomes reachable, the application

successfully connects to it and shows a green “Connected” message again.

5.2. Server Application Testing

During the first launch of the application, the application shows the following message:

“The certificates for secure TLS connection are not found. They will be generated now.

This should take less than a minute.” This means that the application will launch the

OpenSSL application to generate self-signed certificates that are required for the TLS

secure connection. After a couple of seconds, the application shows the next prompt.

If the openssl.exe file is missing or the server is unable to generate those certificates,

it shows the following message: “The certificates cannot be generated. Check if the

openssl.exe file is present and the path does not contain spaces.” In this case, the

application exits since it is unable to function without the certificates.

When the server application is launched, the user is prompted to choose a port for the

server. By default, the user is presented with the port of 23000 but it can be changed.

The port number must be an integer between 1 and 65535.

53

Testing the application with the following values as the port resulted in getting another

prompt:

• check

• 0

• 65536

• An empty value

The selected port is stored in the config.ini configuration file and suggested to the user

in the prompt in the future.

After the port is specified, the application displays the global IP address of the

computer as well as the local IP addresses. The proctor can select one, copy it from

the window, and share it with the students. If there is no internet connection or the

application cannot get the global IP address, the server will show the message “Unable

to detect your global IP address”.

After the IP addresses are shown, the application displays the main GUI that shows

the “Waiting for connections…” sign. If a student is connected, the sign disappears,

and the window shows the data about the student. If another student is connected, the

window splits into two sections located horizontally, where the section on the right

displays the data about the second student. If the third student is connected, the

window becomes a 2x2 grid, and the data is displayed below the first student. The

fourth student will be displayed in the bottom right corner. If the fifth student is

connected, the third column will appear, and so on. The application locates the data in

a grid, keeping the window square.

Each student’s window is highlighted in either green or red color, where green means

that the student is connected and red means that the student got disconnected. This

was tested by connecting to the server, verifying that it shows a green window, then

closing the client and the window would become red.

54

Figure 9 – Example of Running the Server and Multiple Client Applications Simultaneously.

Figure 9 demonstrates that five clients are successfully connected to the server and

are sending the metrics.

5.3. Testing of the Data Collection and Processing

After the client is connected to the server, it starts collecting and sending multiple

metrics to the server. The server interprets and processes the received data and

displays the results in the graphical user interface. The testing process includes

verifying that each of the metrics produces the expected result on the server

application.

55

The first entry in the transmitted data that was tested is the random ID. The client

application displays the random ID in the GUI and the server displays the same ID in

the client’s window, which confirms that the random ID transmission is working

correctly.

The next entry is the student’s full name. It is also displayed on the client’s user

interface and the same name is being displayed on the server, which proves that the

transmission of the full name is working as intended.

Another metric sent to the server is the window title. The client application reads the

title of the active window and sends it to the server, which checks it for suspicious

keywords. To test this aspect, the student is connected to the server and opens

different windows. The windows’ titles are updated in the student’s window on the

server’s GUI, always showing the title of the student’s currently active window, which

is demonstrated in Figure 10.

Figure 10 – Example of the Active Window Title Transmission.

56

One caveat of the current code implementation is that the Cyrillic alphabet is not

supported. Since the Cyrillic alphabet requires two bytes to encode a letter and the

Latin alphabet requires only one byte, the client sends the text as ASCII (American

standard code for information interchange) encoded string which reduces the message

size.

The testing verified that the window title is highlighted in red if it contains a word that

is stored in the suspicious keywords list, and not highlighted otherwise. This list

contains a few words by default. Existing words can be removed from the list, and new

words can be added.

When the student window is displayed and is showing the student information, the

window title is always written as blue underlined text signifying that it is a clickable link.

When the user clicks on it, a window will appear. The words that make up the displayed

window title appear in this window as separate buttons stacked vertically. The words

that are in the suspicious keyword list are written in red font color and others are in

black font color. When the button with the red font is clicked, the keyword is removed

from the list and the window titles containing it are no longer highlighted in red. When

the button with black font is clicked, the corresponding word is added to the list, and

the window titles containing this word are highlighted in red. Whenever a word is added

or removed from the list, the corresponding variable with the list of suspicious keywords

in the config file is updated, which is verified by opening the config.ini file. The

suspicious keyword modification functionality is demonstrated step by step in Figure

11:

1) The proctor clicks on the blue underlined window title

2) Selects the “Quizlet” button

3) The window title is considered suspicious since it contains the “Quizlet” keyword

4) The proctor clicks on the title again and selects the red “Quizlet” button

5) The window title is not suspicious since the “Quizlet” keyword was removed

57

Figure 11 – Example of Adding and Removing Suspicious Keywords.

The next entry in the transmitted data is the active window’s ID number, which is

displayed in the server’s GUI inside the student’s window. It is verified by switching

windows on the student’s computer and observing the change of the window ID

number on the server.

Another metric is the number of monitors, which is sent to the server as an integer

number. If the number of monitors is one, the server does not warn the proctor, and if

the number is greater than one, the server displays a red message stating the number

of monitors, which has been tested using a computer with two monitors.

Next is the information about remote session detection. If the client application is

launched from a remotely controlled computer over Remote Desktop Protocol (RDP),

58

the server displays a “REMOTE SESSION DETECTED!” message in the GUI, which

was tested by running the server in a remote session, as shown in Figure 12.

Figure 12 – Example of the Detection of a Remote Session.

The next metric sent from the client to the server is the manufacturer and the model of

the computer. This data allows the server to detect if the client application is launched

on a virtual machine by checking if the metric contains words like VirtualBox or

VMware, which signify the use of a respective virtual hypervisor. This functionality was

tested by running the client application inside a VirtualBox VM, as shown in Figure 13.

59

Figure 13 – Example of the Detection of a Virtual Machine.

The next data entry is the timestamp in seconds since Epoch, which is used to detect

if the client has disconnected. This was verified by connecting to the server and closing

the client application. The server turned the respective student’s window red within a

few seconds.

The last metric sent from the client is the list of running processes. When the server

receives this metric, it checks if the list contains any processes from the forbidden

applications list. If any forbidden applications are present, it displays the “FORBIDDEN

APPS DETECTED:” message along with the names of such applications. This was

tested by running the applications from the forbidden list on the computer that runs the

client application, shown in Figure 14.

60

Figure 14 - Example of the Detection of a Running Suspicious Application.

If any of the metrics are suspicious or, in other words, if there are any red messages

on the server regarding any student, the information regarding that student is saved in

the log file in the logs folder of the server. The file can be opened with a browser to

view any recorded suspicious activity, which is demonstrated in Figure 15.

Figure 15 – View of the Recorded Suspicious Activity in the Log File.

61

5.4. Secure Connection Testing

The communication between the client and the server is encrypted using TLS protocol

version 1.3. This is a requirement imposed by the sensitivity of the transmitted data.

The connection must be tested to confirm that the data is sent securely.

To verify that the TLS is working properly on the server application, the OpenSSL client

tool was used. The command “openssl.exe s_client -connect 127.0.0.1:23000” allows

us to connect to the server, perform TLS handshake, verify the certificates, and confirm

that TLSv1.3 is working correctly.

To verify that the data transmission is done over TLS version 1.3, the Wireshark

software was used. It allows us to intercept the network traffic and examine it. To test

the secure data transmission, we start the Wireshark software and configure it to

monitor local loopback traffic. Then we start and configure the client and the server on

the same computer and monitor the traffic in Wireshark. We notice the exchange of

data registered in Wireshark, and we can inspect this data. The first few packets are

the TLS handshake process, and the following packets are the data sent from the client

to the server. Reading the packets with the data, we see that they are encrypted with

TLSv1.3, and it is impossible to read the messages sent by the client since TLS

encrypts the plaintext communication channel using Advanced Encryption Standard

(AES), as shown in Figure 16.

62

Figure 16 – Wireshark Packet Recording That Demonstrates the Use of TLS Version 1.3.

6. Results and Conclusion

Apart from creating the client-server applications for cheating prevention on online

exams, this project allowed me to master my abilities to properly structure and develop

programming code. It gave me firsthand experience of following the code design

principles and finding and fixing bugs throughout the development. It allowed me to

learn Windows APIs such as Winsock and WinINet, Windows libraries such as

tlhelp32, wininet. It introduced me to the open-source cryptography and secure

communication library OpenSSL that allows implementing TLS protocol, and most

importantly, this project allowed me to learn the Qt Framework that I have not used

before. I realized that Qt Framework is a powerful tool that allows creating advanced

63

applications with C++ that have flexible graphical user interfaces and use a variety of

Qt libraries that provide many features to the programmer.

There were several problems that I encountered throughout the development of the

application. All of the used libraries and the framework have been new to me, and I

needed to learn them from scratch. The only part that I had experience in was the C++

programming language, although due to the Qt Framework’s implementation, many of

the familiar variable types and functions required for the code were replaced with

different ones that work better or provide more functionality in Qt. After some

preliminary research about the subjects, I learned how to use the framework and the

libraries. I used the online documentations provided with the framework, the APIs, the

libraries to write the code.

There were multiple issues discovered during the development:

• The client would not connect to the server

• The TLS implementation would cause the applications to crash

• The server would interpret the data incorrectly

• The server would not generate self-signed certificates

However, all issues and bugs were fixed in the final version of the applications.

The client application was developed to the full extent, implementing all functional and

non-functional requirements proposed in section 2. The process of running the

application is shown in Figure 17, which shows that it works as intended and provides

an intuitive and useful user interface. I am convinced this application can be distributed

to students in the future to be used during online exams.

64

Figure 17 – Example of the Process of Running the Client Application.

The server application was also fully developed, meeting all functional and non-

functional requirements proposed in the second section of this report. The application

works even better than I anticipated thanks to the Qt Framework, providing a functional

and intuitive graphical user interface demonstrated in Figure 18. This application is

intended to be used by proctors, and I think that it performs all the tasks assigned to it.

Due to the simplicity of the use of the application, it can be provided to professors for

use during online exams, and it will simplify the process of proctoring such exams.

65

Figure 18 - Example of the Process of Running the Server Application with One Disconnected Client.

The client and the server applications include all features that I found useful for their

functioning. However, additional features may be added if Professors find them

necessary for their needs. One example that would improve the application is the use

of a centralized server with a web platform for all proctors, which would allow accessing

the student activity through a web browser.

The software package allows the proctor to see the names of connected students and

the titles and ID numbers of students’ active windows. The proctor is warned if the

application detects any suspicious keywords in the title of the active window and allows

adding and removal of these keywords. If the student is using multiple monitors,

running inside a remote session or a virtual machine, or has any forbidden applications

running, the proctor will be warned. All of these warnings along with a timestamp will

be saved in a log file, which can be opened in a browser.

66

The software package developed throughout this senior project provides a powerful

tool for cheating prevention during online exams. It is free, open-source, reliable, and

developed within the walls of AUBG. The information that the server application

provides to the proctor reliably detects multiple forms of cheating, therefore, the

software can decrease or completely get rid of any cheating by students during online

exams. I think that this software can be used by the University to simplify the process

of proctoring online examinations for Professors and prevent students from cheating.

67

7. References

[1] “C and C++ reference,” cppreference.com. [Online]. Available:

https://en.cppreference.com/w/. [Accessed: 21-Nov-2021].

[2] OpenSSL Documentation. [Online]. Available: https://www.openssl.org/docs/.

[Accessed: 21-Oct-2021].

[3] O. Shrestha, “Design principles in software architecture,” C# Corner. [Online].

Available: https://www.c-sharpcorner.com/article/design-principles-in-software-

architecture/. [Accessed: 24-Nov-2021].

[4] Programming reference for the win32 API. [Online]. Available:

https://docs.microsoft.com/en-us/windows/win32/api/. [Accessed: 21-Oct-

2021].

[5] Qt Documentation. [Online]. Available: https://doc.qt.io/. [Accessed: 21-Oct-

2021].

[6] Qt Wiki. [Online]. Available: https://wiki.qt.io/Main/. [Accessed: 21-Oct-2021].

[7] “Running the Winsock Client and Server Code Sample,” Win32 apps | Microsoft

Docs. [Online]. Available: https://docs.microsoft.com/en-

us/windows/win32/winsock/finished-server-and-client-code. [Accessed: 21-

Oct-2021].

[8] “Simple TLS server,” OpenSSLWiki. [Online]. Available:

https://wiki.openssl.org/index.php/Simple_TLS_Server. [Accessed: 21-Oct-

2021].

[9] “SSL/TLS Client,” OpenSSLWiki. [Online]. Available:

https://wiki.openssl.org/index.php/SSL/TLS_Client. [Accessed: 21-Oct-2021].

68

[10] “Transmission Control Protocol,” IBM Documentation. [Online].

Available: https://www.ibm.com/docs/ro/aix/7.1?topic=protocols-transmission-

control-protocol. [Accessed: 29-Nov-2021].

[11] “What happens in a TLS handshake? | SSL handshake,” Cloudflare.

[Online]. Available: https://www.cloudflare.com/learning/ssl/what-happens-in-a-

tls-handshake/. [Accessed: 29-Nov-2021].

[12] “What is Client-Server? Definition and FAQs,” OmniSci. [Online].

Available: https://www.omnisci.com/technical-glossary/client-server.

[Accessed: 29-Nov-2021].

[13] “What is transport layer security? | TLS protocol,” Cloudflare. [Online].

Available: https://www.cloudflare.com/learning/ssl/transport-layer-security-tls/.

[Accessed: 29-Nov-2021].

[14] “Windows networking reference - win32 apps,” Win32 apps | Microsoft

Docs. [Online]. Available: https://docs.microsoft.com/en-

us/windows/win32/wnet/windows-networking-reference. [Accessed: 21-Nov-

2021].

	0. Table of Contents
	1. Introduction
	1.1. The Problem of Cheating on Online Exams
	1.2. Existing Proctoring Solutions
	1.3. Cheating Prevention Software

	2. Specification of the Software Requirements and Their Analysis
	2.1. Functional Requirements of the Client Application
	2.2. Non-Functional Requirements of the Client Application
	2.3. Functional Requirements of the Server Application
	2.4. Non-Functional Requirements of the Server Application

	3. Design of the Software Solution
	3.1. Design of the Client Application
	3.1.1. User Interface
	3.1.2. Data Collection
	3.1.3. Networking
	3.1.4. Software Architecture

	3.2. Design of the Server Application
	3.2.1. User Interface
	3.2.2. Networking
	3.2.3. Data Analysis
	3.2.4. Logging Suspicious Activity
	3.2.5. Software Architecture

	3.3. Security Considerations
	3.4. Communication Protocol
	3.5. Design Features Imposed by the Qt Framework
	3.6. Reliability Considerations
	3.7. Cross-Platform Portability
	3.8. Employed Design Principles

	4. Implementation
	4.1. C++ Programming Language
	4.2. Qt Framework
	4.3. Qt Modules and Libraries
	4.4. Windows Sockets 2
	4.5. OpenSSL
	4.6. Other Libraries
	4.7. Compilation and Deployment
	4.8. Installation and Hardware Requirements

	5. Testing
	5.1. Client Application Testing
	5.2. Server Application Testing
	5.3. Testing of the Data Collection and Processing
	5.4. Secure Connection Testing

	6. Results and Conclusion
	7. References

